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Abstract: Purpose: To determine the required training size for a desired accuracy in 
brain MRI segmentation in multiple sclerosis (MS) using deep learning (DL).

Methods: Magnetic resonance images on 1008 clinically definite relapsing-remitting 
MS patients who participated in a multi-center, double-blinded, phase III clinical trial
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were included in this study. Images were acquired on 1.5T and 3T scanners 
manufactured by GE, Philips, and Siemens.  Images were acquired using dual 
turbo spin echo, FLAIR, and T1-weighted turbo spin echo sequences. Images 
segmented using an automated analysis pipeline1,2 and validated by two 
neuroimaging experts served as the ground truth. A DL model, based on a fully 
convolutional neural network3, was trained separately using 16 different training 
sizes. The segmentation accuracy as a function of the training size was 
determined. These data were fitted to the learning curve4,  based on an inverse 
power law, for estimating the required training size for desired accuracy. The 
performance of the network was evaluated by calculating the Dice similarity 
coefficient (DSC), and lesion true-positive and false-positive rates.

Results: The DSC for lesions showed much stronger dependency on the sample 
size than gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). 
When the training size was increased from 10 to 800 the DSC values varied from 
0.00 to 0.86  ± 0.016 for T2 lesions, 0.87 ± 009 to 0.94 ± 0.004 for GM, 0.86 ±
0.08 to 0.94 ± 0.005 for WM, and 0.91 ± 0.009 to 0.96  ± 0.003 for CSF. The 
training size needed for a given accuracy strongly depended on the lesion 
volume. For lesion volumes of 500 μl, an accuracy of 0.8 was achieved with a 
small training set of 30. In contrast, even with a training size of 800, the accuracy 
was only 0.5 for lesion size smaller than 70 μl.

Conclusion: Excellent segmentation was achieved with a training size as small 
as 10 image volumes for GM, WM, and CSF. In contrast, a training size of at 
least 50 image volumes was necessary for adequate lesion segmentation. The 
inverse power law dependence allows prediction of the minimum training size 
needed for a given DSC target.
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